Mining the Social Web

Mining the Social Web

Data Mining Facebook, Twitter, Linkedin, Instagram, Github, and More

eBook - 2020
Rate this:
Mine the rich data tucked away in popular social websites such as Twitter, Facebook, LinkedIn, and Instagram. With the third edition of this popular guide, data scientists, analysts, and programmers will learn how to glean insights from social media-including who's connecting with whom, what they're talking about, and where they're located-using Python code examples, Jupyter notebooks, or Docker containers. In part one, each standalone chapter focuses on one aspect of the social landscape, including each of the major social sites, as well as web pages, blogs and feeds, mailboxes, GitHub, and a newly added chapter covering Instagram. Part two provides a cookbook with two dozen bite-size recipes for solving particular issues with Twitter. Get a straightforward synopsis of the social web landscape Use Docker to easily run each chapter's example code, packaged as a Jupyter notebook Adapt and contribute to the code's open source GitHub repository Learn how to employ best-in-class Python 3 tools to slice and dice the data you collect Apply advanced mining techniques such as TFIDF, cosine similarity, collocation analysis, clique detection, and image recognition Build beautiful data visualizations with Python and JavaScript toolkits
Publisher: 2020.
Edition: 3.
ISBN: 9781491973523
9781491973509
Branch Call Number: ELECTRONIC RESOURCE
Characteristics: 1 online resource

Related Resources


Opinion

From the critics


Community Activity

Comment

Add a Comment

There are no comments for this title yet.

Age Suitability

Add Age Suitability

There are no age suitabilities for this title yet.

Summary

Add a Summary

There are no summaries for this title yet.

Notices

Add Notices

There are no notices for this title yet.

Quotes

Add a Quote

There are no quotes for this title yet.

Explore Further

Browse by Call Number

Recommendations

Subject Headings

  Loading...

Find it at CPL

  Loading...
[]
[]
To Top